Persistence of clinically relevant bacteria on dry inanimate surfaces.

<table>
<thead>
<tr>
<th>Type of bacterium</th>
<th>Duration of persistence (range)</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter spp.</td>
<td>3 days to 5 months</td>
<td>[18, 25, 28, 29, 87, 88]</td>
</tr>
<tr>
<td>Bordetella pertussis</td>
<td>3 – 5 days</td>
<td>[89, 90]</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>up to 6 days</td>
<td>[91]</td>
</tr>
<tr>
<td>Clostridium difficile (spores)</td>
<td>5 months</td>
<td>[92-94]</td>
</tr>
<tr>
<td>Chlamydia pneumoniae, C. trachomatis</td>
<td>≤ 30 hours</td>
<td>[14, 95]</td>
</tr>
<tr>
<td>Chlamydia psittaci</td>
<td>15 days</td>
<td>[90]</td>
</tr>
<tr>
<td>Corynebacterium diphtheriae</td>
<td>7 days – 6 months</td>
<td>[90, 96]</td>
</tr>
<tr>
<td>Corynebacterium pseudotuberculosis</td>
<td>1-8 days</td>
<td>[21]</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1.5 hours – 16 months</td>
<td>[12, 16, 17, 22, 28, 52, 90, 97-99]</td>
</tr>
<tr>
<td>Enterococcus spp. incl. (VRE,VSE)</td>
<td>5 days – 4 months</td>
<td>[9, 26, 28, 100, 101]</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>12 days</td>
<td>[90]</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>≤ 90 minutes</td>
<td>[23]</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>2 hours to > 30 months</td>
<td>[12, 16, 28, 52, 90]</td>
</tr>
<tr>
<td>Listeria spp.</td>
<td>1 day – months</td>
<td>[15, 90, 102]</td>
</tr>
<tr>
<td>Mycobacterium bovis</td>
<td>> 2 months</td>
<td>[13, 90]</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>1 day – 4 months</td>
<td>[30, 90]</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>1 – 3 days</td>
<td>[24, 27, 90]</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>1 – 2 days</td>
<td>[90]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>6 hrs – 16 mo.; on dry floor: 5 wks</td>
<td>[12, 16, 28, 52, 99, 103, 104]</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>6 hours – 4 weeks</td>
<td>[90]</td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>10 days – 4.2 years</td>
<td>[15, 90, 105]</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>1 day</td>
<td>[52]</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>3 days – 2 mo.; on dry floor: 5 wks</td>
<td>[12, 90]</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>2 days – 5 months</td>
<td>[90, 106, 107]</td>
</tr>
<tr>
<td>Staphylococcus aureus, including MRSA</td>
<td>7 days – 7 months</td>
<td>[9, 10, 16, 52, 99, 108]</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>1 – 20 days</td>
<td>[90]</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>3 days – 6.5 months</td>
<td>[90]</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>1 – 7 days</td>
<td>[90, 109]</td>
</tr>
</tbody>
</table>

http://www.biomedcentral.com/1471-2334/8/130

15. Heike DM, Wong ACL: **Survival and growth characteristics of Listeria monocytogenes and Salmonella typhimurium on stainless steel and Buna-N rubber.** *Journal of Food Protection* 1994, **57**:963-968. [Publisher Full Text](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1752569/)

35. Mbithi JN, Springthorpe VS, Sattar SA: Effect of relative humidity and air temperature on survival of hepatitis A virus on environmental surfaces. *Applied and Environmental Microbiology* 1991, **57**:1394-1399. [Return to text](#)

41. Abad FX, Pinto RM, Bosch A: Survival of enteric viruses on environmental fomites. *Applied and Environmental Microbiology* 1994, **60**:3704-3710. [Return to text](#)

47. Weber DJ, Rutala WA: The emerging nosocomial pathogens Cryptosporidium, Escherichia coli O157:h7, Helicobacter pylori, and hepatitis C: epidemiology, environmental survival, efficacy of disinfection, and control measures. *Infection Control and Hospital Epidemiology* 2001, **22**:306-315. [Publisher Full Text](#)

51. Boyce JM, Potter-Bynoe G, Chenevert C, King T: Environmental contamination due to methicillin-resistant *Staphylococcus aureus*: possible infection control implications. *Infection Control and Hospital Epidemiology* 1997, **18**:622-627. [Return to text](#)

86. Wilks M, Wilson A, Warwick S, Price E, Kennedy D, Ely A, Millar MR: Control of an outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. *Infection Control and Hospital Epidemiology* 2006, **27**:654-658. Publisher Full Text

88. Getchell-W White SI, Donowitz LG, Groschel DH: The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. *Infection Control and Hospital Epidemiology* 1989, **10**:402-407. [Return to text](#)

98. Abrishami SH, Tall BD, Bruursema TJ, Epstein PS, Shah DB: Bacterial adherence and viability on cutting board surfaces. *Journal of Food Safety* 1994, **14**:153-172. [Return to text](#)

100. Noskin GA, Stosor V, Cooper I, Peterson LR: Recovery of vancomycin-resistant enterococci on fingertips and environmental surfaces. *Infection Control and Hospital Epidemiology* 1995, **16**:577-581. [Return to text](#)

125. Reed S: An investigation of the possible transmission of rhinovirus colds through direct contact. *Journal of Hygiene, London* 1975, **75**:249-258.